
Project 2

Flash Cards

Introduction

In olden days, parents drilled their children in basic arithmetic by using “flash cards.” Each
flash card had a simple arithmetic problem written on one side. The parent would hold the
card up, showing the problem. The child would answer, and the parent would tell the child
whether he or she was correct. (Thankfully for the parents, the correct answer was printed
on the back of the card.) The parents would continue to drill their children in this way until
the children were proficient in arithmetic. It worked for me!

In this project, we will write a program named FlashCards.cpp that will allow the user
to practice basic arithmetic, just as with real flash cards. The user should enter the number
of problems that he wishes to solve. Then the program will present him with the problems,
one at a time. Each problem will be a simple calculation involving one basic operation.

Input and Output

The user will enter the number of problems that he wishes to solve, or else he will enter
0 to quit. (The prompt should indicate that.) If he enters a positive integer, then he will
be presented with that many arithmetic problems. For each problem, he should enter the
answer. He will get a response telling him whether his answer was correct. Then the next
problem will be presented. Beginning with addition, the problems will cycle through the
operations addition, subtraction, multiplication, division, and remainder, in that order.

Once he has completed the set of problems, the program will print his score as the percent
correct followed by a brief message rating his performance. You may create you own brief
messages. Round the score to the nearest whole number and then use a 10-point scale with
six categories: 100, 90 - 99, 80 - 89, 70 - 79, 60 - 69, and 0 - 59.

Calculations

The numbers used in the problems will be generated at random. As we saw in Lab 4, we
can generate a random number in the range, say, 1 to 100 by writing the expression

1



1 + rand() % 100;

We will use variations of that expression in this program. Be sure to initialize the seed, as
was done in Lab 4.

We would like the user to be able to work the problems in his head. To avoid numbers
that are too difficult for an operation, we will consider each type of operation separately.
For example, 24 + 18 and 24 - 18 are easy, but 18 * 24 is not. So the numbers we use
will depend on the type of problem. Multiplication and division will use simpler numbers.
Furthermore, with division the answer will always be a whole number.

Addition: Addition is easy. Generate two numbers, each from 1 to 100. Present the
problem as the sum of those two numbers.

Subtraction: Subtraction is also easy, but we want to avoid negative answers. So, generate
two numbers from 1 to 100 and determine which is larger. Present the problem as the
larger number minus the smaller number. You will recall from Lab 3 how to find the
larger of two numbers.

Multiplication: Multiplication is harder. We need to be sure that the answer is not too
large. To this end, generate two numbers in the range from 1 to 15. Present the
problem as the product of those two numbers.

Division: Division is similar to multiplication. In this case, we want to divide a larger
number by a number that is from 1 to 15 and have that produce an answer from 1 to
15. The way to do this is to generate two random numbers from 1 to 15, just as we
did with multiplication, and then let the first number be the divisor and the second
number be the answer. The dividend (the number we divide into) is then the product
of the two numbers we generated. So it is like multiplication except that we present the
use with the product (the dividend) and one of the two numbers. The other number
is the answer.

For example, if we generate the numbers 4 and 11, then we calculate the product 44

and present the user with the problem 44 / 4 = . The answer is 11.

Remainder: Remainder is not hard. Like subtraction, we would like to avoid “modding” a
smaller number by a larger number (because the answer is always 0). So, like subtrac-
tion, generate two numbers from 1 to 100 and then present the problem as the larger
number modulo the smaller number.

In your program, use a switch statement to select the type of problem. In order to rotate
through the five types of problem, create a variable that represents the type of problem
and let it cycle through the enumerated values 0, 1, 2, 3, 4, where 0 represents addition, 1
represents subtraction, and so on. (See the section below.)

In each case, you must calculate the correct answer. Then prompt the user for his answer
and compare it to the correct answer.

2



Enumerated Types

C++ allows the programmer to create a simple data type, very similar to the int data type,
called an enumerated type, using the keyword enum. For example, we could write

enum Color {RED, YELLOW, GREEN, BLUE};

Then, the name of the type is Color and the values are RED (which is coded as 0), YELLOW
(coded as 1), GREEN (coded as 2), and BLUE (coded as 3). In other words, we are giving
symbolic names to the values 0, 1, 2, and 3. As with other symbolic names of constants, it
is customary to write them in all caps.

In this project, we would like to do that with the names of the arithmetic operators.

enum Operation {ADD, SUB, MUL, DIV, REM};

Operation prob_type = ADD;

Then, in a switch statement, we can write

switch (prob_type)

{

case ADD: ... break;

case SUB: ... break;

etc.

}

This makes the program more readable.

Turning in Your Work

Place your file FlashCards.cpp in a folder named Project 2 and drag the folder to the
dropbox. Be absolutely sure that the file name and folder name are correct. Do not include
any other files in the Project 2 folder that you turn in. Your work is due by midnight,
Friday, October 4, 2019 (which happens to be the Friday before fall break).

3


